Variational Method on Discrete Ricci Flow

نویسندگان

  • Miao Jin
  • Junho Kim
  • Feng Luo
  • Xianfeng Gu
چکیده

Conformal geometry is in the core of pure mathematics. It is more flexible than Riemaniann metric but more rigid than topology. Conformal geometric methods have played important roles in engineering fields. This work introduces a theoretically rigorous and practically efficient method for computing Riemannian metrics with prescribed Gaussian curvatures on discrete surfaces – discrete surface Ricci flow, whose continuous counter part has been used in the proof of Poincaré conjecture. Continuous Ricci flow conformally deforms a Riemannian metric on a smooth surface such that the Gaussian curvature evolves like a heat diffusion process. Eventually, the Gaussian curvature becomes constant and the limiting Riemannian metric is conformal to the original one. In the discrete case, surfaces are represented as piecewise linear triangle meshes. Since the Riemannian metric and the Gaussian curvature are discretized as the edge lengths and the angle deficits, the discrete Ricci flow can be defined as the deformation of edge lengths driven by the discrete curvature. We invented numerical algorithms to compute Riemannian metrics with prescribed Gaussian curvatures using discrete Ricci flow. We also showed broad applications using discrete Ricci flow in graphics, geometric modeling, and medical imaging, such as surface parameterization, surface matching, manifold splines, and construction of geometric structures on general surfaces.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computing general geometric structures on surfaces using Ricci flow

Systematically generalizing planar geometric algorithms to manifold domains is of fundamental importance in computer aided design field. This paper proposes a novel theoretic framework, geometric structure, to conquer this problem. In order to discover the intrinsic geometric structures of general surfaces, we developed a theoretic rigorous and practical efficient method, Discrete Variational R...

متن کامل

Colon Flattening with Discrete Ricci Flow

We present a novel colon flattening algorithm using the discrete Ricci flow. The discrete Ricci flow is a powerful tool for designing Riemannian metrics on surfaces with arbitrary topologies by user-defined Gaussian curvatures. Moreover, the discrete Ricci flow deforms the Riemannian metric on the surface conformally and minimizes the global distortion, which means the local shape is well prese...

متن کامل

Generalized Discrete Ricci Flow

Surface Ricci flow is a powerful tool to design Riemannian metrics by user defined curvatures. Discrete surface Ricci flow has been broadly applied for surface parameterization, shape analysis, and computational topology. Conventional discrete Ricci flow has limitations. For meshes with low quality triangulations, if high conformality is required, the flow may get stuck at the local optimum of ...

متن کامل

Evolution of the first eigenvalue of buckling problem on Riemannian manifold under Ricci flow

Among the eigenvalue problems of the Laplacian, the biharmonic operator eigenvalue problems are interesting projects because these problems root in physics and geometric analysis. The buckling problem is one of the most important problems in physics, and many studies have been done by the researchers about the solution and the estimate of its eigenvalue. In this paper, first, we obtain the evol...

متن کامل

Discrete Surface Ricci Flow: Theory and Applications

Conformal geometry is at the core of pure mathematics. Conformal structure is more flexible than Riemaniann metric but more rigid than topology. Conformal geometric methods have played important roles in engineering fields. This work introduces a theoretically rigorous and practically efficient method for computing Riemannian metrics with prescribed Gaussian curvatures on discrete surfaces—disc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008